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ABSTRACT

We prove that for a fixed non-archimedean place v of a totally real number

field F , the traces of the associated Langlands classes of holomorphic

cuspidal representations of GL2(A) with trivial central character and of

prime levels is equidistributed with respect to the measure

dµv(x) =
qv + 1

(q
1/2
v + q

−1/2
v )2 − x2

dµ∞(x),

where qv is the norm of the prime ideal corresponding to v and dµ∞(x) =

1
π

√
1 −

x2

4
dx is the Sato-Tate measure. This generalizes a result of Sarnak

[Sa] on the distribution of Hecke eigenvalues of modular forms. The proof

involves establishing a trace formula for the Hecke operators. While not

explicit, this trace formula can be used as a starting point for generalizing

the Eichler-Selberg trace formula to totally real number fields.

1. Introduction

Let (X,µ) be a topological measure space. Let S1, S2, . . . , Si, . . . be a sequence

of finite multisets with elements in X . Let |Si| be the cardinality of Si. We

say {Si} is equidistributed with respect to dµ (or µ-equidistributed) if for any

continuous function f on X , we have

(1) lim
i→∞

∑
x∈Si

f(x)

|Si|
=

∫

X

f(x)dµ(x).
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If a1, a2, . . . is a sequence of points of X , we say that {an} is µ-equidistributed

if {Si} is µ-equidistributed where Si = {a1, . . . , ai} (see [Se1]).

Let F be a number field. Let A be the adele ring of F . If π is a cuspidal auto-

morphic representation of GL2(A), for each place v at which π is unramified, let

Av(π) denote the associated Langlands class in GL2(C), which is represented

by a diagonal matrix ( α1v
α2v ). Let λv(π) denote the trace of this class. The

numbers α1v, α2v can also be called Satake parameters. The general Ramanujan

conjecture predicts that |αiv| = 1, or equivalently, |λv(π)| ≤ 2. The proof of the

conjecture for GL2 holomorphic cuspidal representations over Q can be found

in Deligne [De] and Deligne-Serre [DS]. Brylinski and Labesse [BL, Theorem

3.4.6] showed that the conjecture is true at almost all primes for GL2 holo-

morphic cuspidal representations over a totally real field F . Recently, the full

conjecture (at all places, when all weights are ≥ 2) was proved by Blasius [Bl],

with a parity condition on the weights. The parity requirement was removed in

the thesis of his student L. Nguyen [Ng].

If the central character of π is trivial and π is a genuine cuspidal repre-

sentation ([Sh, Definition 3.3]), the Sato-Tate conjecture predicts that the set

{λv(π) : v with πv unramified} is equidistributed with respect to the Sato-Tate

measure

(2) dµ∞(x) =





1
π

√
1 − x2

4 dx if x ∈ [−2, 2],

0 otherwise.

See [Sh], [Se2, Chapter 1] and [Mu, Lecture 1]. A recent major breakthrough can

be found in Taylor [Ta]. He proved the Sate-Tate conjecture for automorphic

representation π of GL2(A) for which πv is a weight 2 discrete series represen-

tation for all the archimedean valuations v and for which the local component

at some finite place is an unramified twist of the Steinberg representation.

In this paper, we do not prove these conjectures, which are still open in

general. Instead, we use an idea introduced by Sarnak [Sa] for finding the

distributions of Hecke eigenvalues for fixed v as levels vary. See also [Se1] and

[CDF].

From now on we assume F is totally real and has degree r ≥ 2 over Q. Let

NF/Q be the norm map. Let σ1, . . . , σr be the embeddings of F into R. Let

∞1, . . . ,∞r be the corresponding valuations. Let σ be the map from F to Rr

defined by σ(x) = (σ1(x), . . . , σr(x)). Let O be the ring of integers. For a

nonzero integral ideal a, let N(a) = |O/a| denote the absolute norm. Let Ô
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denote
∏
v<∞ Ov, where v < ∞ is the set of non-archimedean valuations. Let

Afin be the set of finite adeles. We freely identify the set with 1∞ × Afin ⊂ A.

Let G = GL2, and let Z denote its center. We freely identify Z(A) with A∗

throughout this paper. Let G denote Z\G. Generally, if S is a subset of G, S

denotes the image of S in Z\G. Let K∞i =
{
kθ = ( cos θ sin θ

− sin θ cos θ )
}

be a compact

subgroup of G(F∞i) = G(R). Let K∞ =
∏r
i=1K∞i . Let Kv = GL2(Ov)

be the standard maximal compact subgroup of G(Fv). Let Kfin = GL2(Ô) =∏
v<∞Kv be the standard maximal compact subgroup of G(Afin). Let K =

K∞Kfin.

Let L2 = L2(G(F )\G(A)) be the space of square integrable functions on

G(F )\G(A). Let R denote the right regular representation of G(A) on L2.

Denote by L2
0 the subspace of cuspidal functions. The restriction of R to L2

0

is denoted by R0. We know that R0 decomposes as a discrete sum of irre-

ducible representations (see [GGPS, Chapter 3, Section 4.6]). These are the

cuspidal representations. Every cuspidal representation π can be factorized as

a restricted tensor product of irreducible admissible local representations
⊗̂
πv

with πv unramified almost everywhere (see [Fl]).

Let N be an integral ideal. Let v be a non-archimedean valuation. Define

groups

K0(Nv) =

{(
a b

c d

)
∈ Kv : c ∈ Nv

}
, K0(N) =

∏

v<∞

K0(Nv).

These are open compact subgroups of G(Fv) and G(Afin), respectively. Let

k = (k1, . . . , kr) be an r-tuple of integers, each greater than 2. Let Πk(N) be

the set of cuspidal representations π in L2
0 for which:

1. πfin =
⊗̂

v<∞πv contains a nonzero K0(N)-fixed vector;

2. π∞i = πki (the discrete series representation of G(R) of weight ki, see

[KL, Chapter 11]), for i = 1, . . . , r.

The set of such π is finite (see [BJ, Section 1]). Because the central character

is trivial, we can assume k1, . . . , kr are even numbers.

Theorem 1.1: Let v be a non-archimedean valuation of F and let p be its

corresponding prime ideal. Let qv = N(p). Let {Ni} be a sequence of prime

ideals different from p. Suppose Ni → ∞ when i → ∞; here N → ∞ means

N(N) → ∞. Then the family of multisets Si = {λv(π) : π ∈ Πk(Ni)} is
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equidistributed with respect to the measure

(3) dµv(x) =
qv + 1

(q
1/2
v + q

−1/2
v )2 − x2

dµ∞(x).

The theorem is a generalization of [Se1, Theorem 2]. The proof of this theorem

is given in Section 4. As in [Se1], the proof relies on a trace formula for Hecke

operators. The trace formula is interesting on its own and is given in Theorem

3.21. We closely follow [KL]. This trace formula can be a starting point for

generalizing the Eichler-Selberg trace formula to Hilbert modular forms.

Here are some interesting applications of Theorem 1.1 from [Se1].

Corollary 1.2: Let I ⊂ R be an interval. Then the proportion of λv(π) ∈ I

among {λv(π) : π ∈ Πk(Ni)} tends to
∫
I dµv(x) when i→ ∞.

Proof. Let f be the characteristic function of I in (1).

Corollary 1.3: {λv(π) : π ∈ Πk(Ni)} is dense in [−2, 2].

Proof. This follows from the fact that dµv(x)
dx is a strictly positive function on

[−2, 2].

This shows that the bound 2 given in the Ramanujan conjecture is optimal,

because there are infinitely many λv(π) in the interval [2 − ε, 2] for any ε > 0.

I would like to thank Andrew Knightly and Jean-Pierre Serre for their com-

ments.

2. Test functions

Let π∞i = πki be the discrete series representation of G(R) with weight ki.

When π is a discrete series representation, denote by wπ a lowest weight vector

of π with norm one. Define

(4) Ak(N) =
⊕

π∈Πk(N)

Cwπ∞1
⊗ · · · ⊗ wπ∞r

⊗ π
K0(N)
fin ,

where π
K0(N)
fin is the subspace of K0(N)-fixed vectors in the space of πfin.

The absolute value on Fv is defined by the relation d(ax) = |a|dx, where dx

is a Haar measure on Fv. The Haar measure on A is normalized such that

meas(F\A) = 1. For v < ∞, the Haar measure on F ∗
v is normalized such
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that meas(O∗
v) = 1. The Haar measure on G(Fv) is normalized such that

meas(Kv) = 1.

Let π be a representation of a group G. Let f be an element in L1(G). For

w in π, define π(f)w =
∫
G
f(g)π(g)wdg. In this section we construct a function

f such that the operator on L2 defined by

(5) R(f)φ(x) =

∫

G(A)

f(g)φ(xg)dg

has finite rank ( ≤ dimAk(N)), and acts like a Hecke operator on Ak(N).

Let M be the diagonal subgroup of G. Let N = {( 1 ∗
1 )} be the unipotent

subgroup. Let B = MN be the set of upper triangular matrices. Define a

homomorphism H : M → R by ( a 0
0 b ) 7→ log

∣∣a
b

∣∣ . We can extend H to a function

on G(A) by H(g) = H(m) if g = mnk,m ∈M(A), n ∈ N(A) and k ∈ K. This

is the height function on G(A).

2.1. Construction of test functions. Let f be a function on G(A). We

assume f is a product of local functions on G(Fv):

f = f∞ffin =

r∏

i=1

f∞i

∏

v<∞

fv,

where fv is the characteristic function of Kv for almost every v.

For the non-archimedean places, we take fv to be a bi-K0(Nv)-invariant func-

tion whose support is compact modulo Z(Fv). We now specify the local factors

of f more precisely. Let n,N be two integral ideals. We further assume that

(n,N) = 1. Let R be a ring. Denote by M2(R) the set of 2 by 2 matrices over

R. For fixed v, define a set

M(nv,Nv) =

{
g =

(
a b

c d

)
∈M2(Ov) : c ∈ Nv, (det(g)) = nv

}
.

Let χv be the characteristic function of M(nv,Nv). Define

(6) fv = ψ(Nv)χv.

Here (see [KL, Lemma 13.1])

ψ(Nv) = meas(K0(Nv))
−1 = [Kv : K0(Nv)]

=





q
ordv(N)−1
v (qv + 1) if ordv(N) > 0

1 if ordv(N) = 0.
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The factor ψ(Nv) in fv is to ensure that when v - n, πv(fv)w = w if w is a

K0(Nv)-fixed vector. Define ψ(N) =
∏
v<∞ ψ(Nv). Write

fn = fn
N =

∏

v<∞

fv.

The notation N in fn
N is usually dropped when it is clear from the context.

Let k be an integer. Let πk be the discrete series representation of G(R)

of weight k. Denote by wk a lowest weight vector for πk with norm one. Let

dk be the formal degree of πk. Let fk(g) be the normalized matrix coefficient

dk〈πk(g)wk, wk〉. Explicitly, if g = ( a bc d ), then ([KL, Section 14])

(7) fk(g) =





(k−1)
4π

det(g)k/2(2i)k

(−b+c+(a+d)i)k if det(g) > 0

0 otherwise.

This function is absolutely integrable if and only if k > 2. Define

f∞i = fki , fk =

r∏

i=1

fki .

It is easily seen that when det(g) > 0,

(8) |f∞i(g) = |fki(g)| =
(ki − 1)

4π

2ki(det g)ki/2

(a2 + b2 + c2 + d2 + 2| det g|)ki/2
.

The adjoint of R(f) is R(f)∗ = R(f∗), where f∗(g) = f(g−1). A simple cal-

culation shows that when f = fkf
n, f∗ = f . Therefore, R(f) is a self-adjoint

operator.

Unless otherwise stated, we assume f = fkf
n throughout this paper.

2.2. Image of R(f).

Lemma 2.1: Let k > 2 be an integer. Let g1, g2 ∈ G(R). Then
∫

N(R)

fk(g1ng2)dn = 0.

Proof. Write n = ( 1 t
1 ),

fk(g1ng2) =
C

(At+B)k
,

where A,B and C are complex numbers depending on g1, g2. Because fk(g1ng2)

is finite as a function of n ∈ N(R), C
(At+B)k has no poles on R. By the residue

theorem, it is easily shown that
∫ ∞

−∞
Cdt

(At+B)k = 0.
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Proposition 2.2: Suppose f = fkf
n. Then R(f) maps

Ak(N) → Ak(N)

and vanishes on Ak(N)⊥, the orthogonal complement of Ak(N) in L2.

Proof. ([KL, p. 216–p. 219]) Since R(f) is a self-adjoint operator, R(f)

annihilates Im(R(f))⊥: suppose w ∈ Im(R(f))⊥, then for any u ∈ L2,

0 = 〈R(f)u,w〉 = 〈u,R(f)w〉. Therefore, R(f)w must be 0.

To prove the proposition, it suffices to show that ImR(f) ⊂ Ak(N).

First, suppose φ ∈ L2 is bounded, so that |φ(g)| ≤ M for some M . For any

g ∈ G(A), the constant term of R(f)φ is given by

∫

N(F )\N(A)

R(f)φ(ng) dn =

∫

N(F )\N(A)

[∫

G(A)

f(x)φ(ngx) dx

]
dn.

This double integral is absolutely convergent since
∫

N(F )\N(A)

∫

G(A)

|f(x)φ(ngx)| dx dn ≤M meas(N(F )\N(A))‖f‖1 <∞.

Therefore, by Fubini’s theorem,
∫

N(F )\N(A)

R(f)φ(ng) dn

=

∫

N(F )\N(A)

[∫

G(A)

f(g−1n−1x)φ(x) dx

]
dn

=

∫

N(F )\N(A)

[∫

N(F )\G(A)

∑

δ∈N(F )

f(g−1n−1δx)φ(x) dx

]
dn

=

∫

N(F )\G(A)

[∫

N(A)

f(g−1nx) dn

]
φ(x) dx = 0

by Lemma 2.1. Thus R(f)φ is cuspidal for bounded φ ∈ L2. Such functions are

dense in L2. Because R(f) is a continuous operator and the cuspidal subspace

is closed, R(f)φ is cuspidal for all φ ∈ L2(ω). This shows that ImR(f) ⊂ L2
0.

Hence, R(f) annihilates L2
0
⊥

.

It remains to show that for w ∈ L2
0, R(f)w ∈ Ak(N). Because L2

0 is the

closure of the direct sum of cuspidal representations, it suffices to prove that

R(f)w ∈ Ak(N) for any w in a cuspidal representation π. It is known that
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π = π∞1 ⊗ · · · ⊗ π∞r ⊗ πfin. Without loss of generality, we can take w =

w1 ⊗ · · · ⊗ wr ⊗ wfin. Then

(9) R(f)w =

( r⊗

i=1

π∞i(f∞i)wi

)
⊗ πfin(ffin)wfin.

By the orthogonality properties of matrix coefficients (see [KL, Corollary 10.26]

for the strong version of Schur orthogonality we use here), π∞i(f∞i)wi = 0 un-

less π∞i
∼= πki . Assuming π∞i

∼= πki , we have π∞i(f∞i)wi ∈ Cwπ∞i
. Because

ffin is left K0(N)-invariant, R(ffin)wfin is K0(N)-invariant. This completes the

proof.

2.3. γ’s that appear in the geometric side.

Lemma 2.3: Suppose fv is defined as in Section 2.1. Suppose g = ( a bc d ) ∈
G(Fv) and that (det(g)) = nv. Then fv(g) 6= 0 if and only if g ∈ M2(Ov) and

c ∈ Nv, i.e., if and only if g ∈M(nv,Nv).

Proof. fv(g) 6= 0 if and only if g = zm, with z ∈ Z(Fv), m ∈ M(nv,Nv).

Taking determinants we see that z is a unit in Ov (identifying Z(Fv) with F ∗
v ).

Thus z can be absorbed into m, so g ∈M(nv,Nv) as required.

If a is a fractional ideal of F , use [a] to represent the corresponding ideal class

in the ideal class group of F . Consider the following equation in the ideal class

group of F :

(10) 1 = [b]2[n].

Suppose [b1], . . . , [bt] are the solutions of the equation. We can assume that

b1, . . . , bt are integral ideals. Let ni ∈ O be a generator of b2
i n, i.e.

(11) niO = b2
i n.

By Dirichlet’s unit theorem, O∗ is an abelian group of the form Z/2Z×Zr−1.

Obviously O∗/O∗2 has order 2r. Let

(12) U = {u1, . . . , u2r} ⊂ O∗

be a fixed set of representatives for O∗/O∗2.

Proposition 2.4: Suppose γ ∈ G(F ), x, y ∈ G(Afin) such that detx−1y ∈ Ô∗

and fn(x−1γy) 6= 0. Then there exist i, j and s ∈ F ∗, such that

(13) det γ = s2niuj.
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Here i, j are uniquely determined by γ, and s is uniquely determined up to ±1.

Let γ̃ = s−1γ ∈ γZ(F ). Then

(14) det γ̃ = niuj.

fn(x−1γy) 6= 0 if and only if we have

(15) β−1x−1γ̃y ∈
∏

v<∞

{
gv =

(
av bv

cv dv

)
∈M2(Ov) : cv ∈ Nv

}
,

where β = (βv) is in A∗
fin such that βv is a generator of biv.

Proof. If fn(x−1γy) 6= 0, then x−1
v γyv ∈ Z(Fv)M(nv,Nv). Taking deter-

minants on both sides, (det γ)v = z2
vnv for some zv ∈ F ∗

v . Equivalently,

ordv det γ ≡ ordv n (mod 2). Therefore, there exists an ideal b such that

(det γ) = b2n. The ideal class [b] satisfies (10). By unique factorization of

ideals, b is uniquely determined by γ. We know that [b] = [bi] for some i. Thus

there exists h ∈ F ∗ such that hb = bi. We have (h2 det γ) = h2b2n = b2
i n = (ni).

Therefore, h2 det γ = niu for some u ∈ O∗. Write u = w2uj with w ∈ O∗ and

uj ∈ U as in (12). Because h is unique up to multiplication by units, u is unique

up to multiplication by squares of units. Therefore, uj is uniquely determined

by γ. Now (hw−1)2 det γ = niuj. Letting s = h−1w, (13) holds. It is clear from

the proof that s is unique up to ±1.

When γ̃ = s−1γ, det γ̃ = niuj , thus (det γ̃) = (ni) = b2
i n. Localizing at v, we

have (detβ−1
v γ̃) = nv, i.e., (detβ−1

v x−1
v γ̃yv) = nv. The proposition then follows

easily from the previous proposition.

Corollary 2.5: Suppose γ ∈ G(F ), x, y ∈ G(Afin) such that detx−1y ∈ Ô∗

and fn(x−1γy) 6= 0. Then there exists γ̃ ∈ G(F ) such that γ̃Z(F ) = γZ(F )

and

det γ̃ = niuj.

Here, i, j are uniquely determined by γ and γ̃ is unique up to ±1. Also, we

have

x−1γ̃y ∈
∏

v<∞

M2(Ov).

Proof. This follows easily from the previous proposition, (15) and the fact that

bi is an integral ideal.
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Let n ∈ O. Let Q be a positive integer. Define

D(n, Q) = {γ ∈ Q−1M2(O)/± : det γ = n}.

Corollary 2.6: Let K ′
fin =

∏
v<∞K ′

v be a compact subset of G(Afin). Then

there exists a positive integer Q depending only on K ′
fin such that if γ ∈ G(F )

and x ∈ K ′
fin satisfies fn(x−1γx) 6= 0, there exist unique i, j and unique γ̃ ∈

D(niuj, Q) with γ̃Z(F ) = γZ(F ).

Proof. From the previous corollary, there exist unique i, j, γ̃ ∈ G(F )/± such

that det γ̃ = niuj and γ̃Z(F ) = γZ(F ). Because K ′
fin is compact, there exists

a positive integer S such that K ′
fin and K ′

fin
−1 ⊂ S−1M2(Ô). Again from

the previous corollary, γ̃ ∈ ∏
v<∞ xvM2(Ov)x

−1
v ⊂ S−2M2(Ô). Therefore,

γ̃ ∈ Q−1M2(O) with Q = S2.

3. Trace formula

In this section, we introduce Arthur’s trace formula as in [Ge], [Ar1] and [Ar2].

In Arthur’s work, the test function is compactly supported. However the func-

tion f = fkf
n we constructed is not compactly supported. So extra care should

be taken about the convergence issues. The final formulas and the proofs for

hyperbolic conjugacy classes and the unipotent conjugacy class are not much

different from that of compactly supported test functions. We closely follow

[KL, Chapters 15–22]. Here are few important properties of f = fkf
n:

1. fn is bounded and compactly supported modulo Z(Afin). This property

allows us to replace sums over G(F ) with discrete sums over matrices.

2. f∞i has polynomial decay (see (8)).

3. R(f) is a finite rank operator.

3.1. Siegel sets. Let us recall some properties about Siegel domains ([Go,

Theorem 7]). Let A1 be the set of norm one elements in A. Let C1 be a

compact subset of A. Let C2 be a compact subset of A1. Let Y > 0 be a real

number. A Siegel domain S is a set of points in the form

(16)

(
1 x

1

)(
y1/2

y−1/2

)(
m

1

)
k,
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where x ∈ C1, m ∈ C2, k ∈ K and a real number y > Y . The number y can

be identified with an idele whose infinite components are y and whose finite

components are 1.

When S is sufficiently large, i.e., C1 and C2 are sufficiently large and Y is

sufficiently small, we have G(A) = G(F )S.

Let Y ′ be a positive number and C′ be a compact subset of R. Let D be the

set: {(
1 x

1

)(
y1/2

y−1/2

)
: x ∈ C′, y > Y ′

}
.

By absorbing the infinite component of m into the y-part and the finite com-

ponent of m into k in (16), we obtain a variant of the Siegel domain:

(17) S′ =

r∏

i=1

DK∞i ×
∏

v<∞

K ′
v,

where K ′
v is an open compact set and is equal to Kv for a.e. v. Define K ′

∞i
=

K∞i . Let K ′ =
∏
vK

′
v. When C′ and K ′ are sufficiently large and Y ′ is

sufficiently small, we have S ⊂ S′. Let S′
∞ =

∏r
i=1 DK∞i .

Let C01 be a compact subset of A. Let C02 be a compact subset of A1. Let

S0 be a set of points in the form of (16) with x ∈ C01, m ∈ C02, k ∈ K and real

number y > 0. When C01, C02 are sufficiently large, we have G(A) = B(F )S0

and S ⊂ S0.

From now on, we assume S, S0, S′ and K ′ =
∏
K ′
v are fixed as above.

3.2. Kernel functions. Let f be a continuous function of G(A). The kernel

of R(f) is formally defined as

(18) K(g1, g2) =
∑

γ∈G(F )

f(g−1
1 γg2).

When f is a compactly supported function, the kernel function is a finite sum

when g1, g2 belong to compact sets. We are going to prove the absolute conver-

gence and continuity of the kernel function for f = fkf
n.

Let α, β ∈ L1(G). The convolution of α and β is given by

(α ∗ β)(x) =

∫

G

α(g)β(g−1x)dg =

∫

G

α(xg)β(g−1)dg.

This product makes L1(G) into an associative algebra.
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For an integrable function f ∈ L1(G(A)), we give a condition under which

the kernel K(g1, g2) =
∑

γ f(g−1
1 γg2) is absolutely convergent and continuous

in both variables. The idea behind the proposition is from [Os, p. 86].

Proposition 3.1: Let C1, C2 ⊂ G(A) be subsets with compact image in

G(A). Suppose ψ1, ψ2 are bounded measurable compactly supported functions

on G(A). Suppose f ∈ L1(G(A)) satisfies

(19) f = ψ1 ∗ f = f ∗ ψ2.

Then for every γ ∈ G(F ), there exists a real number αγ , independent of g1 ∈ C1

and g2 ∈ C2, such that

|f(g−1
1 γg2)| ≤ αγ

and
∑

γ∈G(F )

αγ <∞.

Proof. Let M be an upper bound for |ψ1| and |ψ2|. Then for any (g1, g2) ∈
C1 × C2,

|f(g−1
1 γg2)| = |(ψ1 ∗ f)(g−1

1 γg2)| =

∣∣∣∣
∫

G(A)

ψ1(h1)f(h−1
1 g−1

1 γg2)dh1

∣∣∣∣

=

∣∣∣∣
∫

G(A)

ψ1(g
−1
1 h1)f(h−1

1 γg2)dh1

∣∣∣∣

≤M

∫

g1 Suppψ1

|f(h−1
1 γg2)|dh1.

Similarly,

|f(h−1
1 γg2)| ≤M

∫

g2(Suppψ2)−1

|f(h−1
1 γh2)|dh2.

Thus we can choose

αγ = M2

∫

C1 Suppψ1

∫

C2(Suppψ2)−1

|f(h−1
1 γh2)|dh2dh1.

Let B ⊂ G(A) be a fundamental domain for G(F )\G(A). Let B′ be an open

set, slightly bigger than B. We assume that B′ can be covered by finitely

many translations of B. Because C2(Suppψ2)−1 is compact, it can be covered

by finitely many open sets of the form γB′ for γ ∈ G(F ). Hence there exist
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γ1, γ2, . . . , γm ⊂ G(F ) such that γ1B ∪ · · · ∪ γmB covers C2(Suppψ2)−1. We

have now

∑

γ∈G(F )

αγ ≤
∑

γ∈G(F )

M2

∫

C1 Suppψ1

m∑

i=1

∫

γiB

|f(h−1
1 γh2)|dh2dh1

≤ mM2

∫

C1 Suppψ1

∫

B

∑

γ∈G(F )

|f(h−1
1 γh2)|dh2dh1

= mM2

∫

C1 Suppψ1

∫

G(A)

|f(h−1
1 h2)|dh2dh1

= mM2 meas(C1 Suppψ1)‖f‖1 <∞.

Proposition 3.2: Let f = fkf
n. Suppose Γ is a subset of G(F ), then
∑

γ∈Γ

f(g−1
1 γg2)

is absolutely convergent and defines a continuous function in both variables.

Proof. Because f = fkf
n is a continuous function in L1(G(A)) and G(A) is

locally compact, it suffices to find appropriate ψ1 and ψ2 as above. We construct

ψ = ψ1 first.

Define ψfin = 1

meas(K0(N))
χK0(N). Because fn is left-K0(N)-invariant, we have

ψfin ∗ fn = fn.

Let φi be a continuous, compactly supported function on B(R) such that

φi(−b) = (−1)kiφi(b). Then φi can be extended to G(R) by

φ̃i(kθb) = e−ikiθφi(b).

Suppose π = πki . Let wki = wπ be a lowest weight vector of π with norm one.

Then it is easy to show that

π(kθ)π(φ̃i)wki = eikiθπ(φ̃i)wki .

Therefore, π(φ̃i)wki = ciwki for some ci ∈ C.

The adjoint of π(φ̃i) is π(φ̃∗i ). Using the Iwasawa decomposition G = BK,

we see that

π(φ̃∗i )wki =

∫

B(R)

φi(b−1)π(b)wkidb.

By the standard usage of Dirac sequence (see, for example, [La, Section 1.1]),

we can show that the above integral can be arbitrarily close to wki by suitable
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choices of φi. Therefore,

0 6=
〈
wki , π(φ̃∗i )wki

〉
=

〈
π(φ̃i)wki , wki

〉
= ci‖wki‖2,

i.e., ci 6= 0. Take ψ∞i = φ̃i/ci. Then π(ψ∞i)wki = wki . Therefore,

(ψ∞i ∗ fki)(g) = dki

∫

G(R)

ψ∞i(h)〈π(g)wki , π(h)wki〉dh

= dki〈π(g)wki , π(ψ∞i)wki〉
= dki〈π(g)wki , wki〉
= fki(g).

We can take ψ1 = ψ = (
∏r
i=1 ψ∞i) × ψfin.

The function ψ2 can be constructed similarly. In fact, by the self-adjointness

of f , we can take ψ2 = ψ∗
1 .

Lemma 3.3: If φ ∈ Ak(N), then φ is a continuous function.

Proof. From the construction of ψ = ψ1 in the previous proposition, R(ψ)φ = φ.

Since φ is cuspidal, it is well-known that |R(ψ)φ| is bounded [Bu, Proposition

3.2.3]. Let M be an upper bound.

Let V be a fixed open neighborhood of the identity in G(A) with compact clo-

sure. Since ψ is compactly supported and continuous, it is uniformly continuous

[KL, Proposition 10.11], i.e., for any ε > 0, there exists an open neighborhood

U of the identity such that |ψ(y1) − ψ(y2)| < ε whenever y1y
−1
2 ∈ U . Without

loss of generality, we can assume U ⊂ V . For x−1
1 x2 ∈ U ,

|R(ψ)φ(x1) −R(ψ)φ(x2)| =

∣∣∣∣∣

∫

G(A)

(ψ(x−1
1 g) − ψ(x−1

2 g))φ(g)dg

∣∣∣∣∣

≤
∫

x1U Suppψ

|ψ(x−1
1 g) − ψ(x−1

2 g)||φ(g)|dg

≤ εM meas(V Suppψ).

Therefore, φ = R(ψ)φ is continuous.

When f = fkf
n, R(f) annihilates Ak(N)⊥ by Proposition 2.2. BecauseAk(N)

is a finite dimensional space, R(f) is a finite rank operator and hence is of trace

class. Another way to express the kernel is

(20) Φ(g1, g2) =
∑

φ

R(f)φ(g1)φ(g2),
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where φ runs through an orthonormal basis of Ak(N). It is known that

Φ(g1, g2) = K(g1, g2) almost everywhere (see [KL, Chapter 15]). Since any func-

tion in Ak(N) is continuous, Φ(g1, g2) is a continuous function. By Proposition

3.2, K(g1, g2) is also a continuous function. Therefore, Φ(g1, g2) = K(g1, g2)

everywhere. One can then easily show that

(21) trR(f) =
∑

φ

〈R(f)φ, φ〉 =

∫

G(F )\G(A)

K(g, g)dg.

The Hecke operators R(fkf
n) on Ak(N) for (n,N) = 1 are commutative

and self-adjoint and thus simultaneously diagonalizable. For π ∈ Πk(N), let

Ek(π,N) be a basis for π∩Ak(N) consisting of simultaneous eigenvectors of the

Hecke operators. Let Ek(N) be a basis consisting of simultaneous eigenvectors

of the Hecke operators. We can take Ek(N) =
⋃
Ek(π,N). We have

(22) K(g1, g2) =
∑

π∈Πk(N)

∑

ϕ∈Ek(π,N)

R(f)ϕ(g1)

‖ϕ‖
ϕ(g2)

‖ϕ‖ .

Define a polynomial of degree n by

Xn(2 cos θ) =
sin(n+ 1)θ

sin θ
.

The main properties of Xn can be found in [Se1].

Proposition 3.4: Suppose n = pn. Then

(23) K(g1, g2) = qn/2v

∑

π∈Πk(N)

∑

ϕ∈Ek(π,N)

Xn(λv(π))
ϕ(g1)

‖ϕ‖
ϕ(g2)

‖ϕ‖ .

Proof. Let ϕ be a nonzero element in π ∩ Ak(N). Let $v be a uniformizer of

Ov. Let χ be the character on B(Fv) defined by χ( a bd ) = χ1(a)χ2(d), where χi

is the unramified character given by χi($v) = αiv. Because v - N, πKv
v is non-

trivial. It is known that πv is isomorphic to Ind
G(Fv)
B(Fv) χ. Using the well-known

left coset decomposition of M(n,N)v(see [KL, Lemma 13.4]), we can show that

R(f)ϕ = q
n/2
v

∑n
i=0 α

i
1vα

n−i
2v ϕ. The reader is referred to [Ro, Lemma 2.8] for

the case n = 1. Therefore, R(f)ϕ = q
n/2
v Xn(λv(π))ϕ. The proposition follows

easily from (22).

Let πv be an irreducible admissible infinite-dimensional representation of

G(Fv). Let c(πv) be the conductor of πv, i.e., the largest integral ideal cv

of Ov such that π
K0(cv)
v is nonempty. For more details we refer the reader
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to [Ca, Theorem 1]. When π is a cuspidal representation, π =
⊗̂
πv. Define

c(π) to be largest integral ideal c of O such that πK0(c) is nonzero. Obviously,

c(π) =
∏
v<∞ p

ordv c(πv)
v .

Let a be an integral ideal. Define d(a) to be the number of distinct integral

ideal factors of a. It can be calculated by

d(a) =
∏

p|a

(ordp(a) + 1).

Proposition 3.5: Suppose n = pn. Then

trR(f) = qn/2v

∑

π∈Πk(N)

d(N/c(π))Xn(λv(π)).

When π ∈ Πk(N), c(π)|N, therefore, N/c(π) is an integral ideal and thus

d(N/c(π)) is meaningful.

Proof. By (21) and (23),

trR(f) = qn/2v

∑

π∈Πk(N)

∑

ϕ∈Ek(π,N)

Xn(λv(π)).

It suffices to show that |Ek(π,N)| = dimπ
K0(N)
fin = d(N/c(π)). By [Fl, Theorem

4], the space of K-finite vectors of π is in a natural way an admissible irreducible

G(Afin)-module πK−fin and πK−fin can be factorized as
⊗

v<∞ πKv−fin
v with

πKv−fin
v an admissible irreducible G(Fv)-module. By [Ca, Corollary on p. 306],

if c(π)|N, dim π
K0(N)
fin =

∏
v<∞ dimπ

K0(Nv)
v =

∏
v<∞(ordv(Nv/c(πv)) + 1) =

d(N/c(π)).

To get rid of the multiplicity d(N/c(π)), we can use the technique in [Se1,

Section 5.1]. Here we state the case which is of interest to us.

Proposition 3.6: Let n = pn. Let N = Ps, where P is a prime ideal and

s is a positive integer. Let f ′ = fkf
n
N′ be the test function corresponding to

N′ = Ps−1, then

trR(f) − trR(f ′) = qn/2v

∑

π∈Πk(N)

Xn(λv(π)).



Vol. 169, 2009 DISTRIBUTION OF SATAKE PARAMETERS 357

Proof. Obviously Πk(N
′) ⊂ Πk(N). By the previous proposition

trR(f) − trR(f ′) =qn/2v

∑

π∈Πk(N)−Πk(N′)

d(N/c(π))Xn(λv(π))

+ qn/2v

∑

π∈Πk(N′)

(d(N/c(π)) − d(N′/c(π)))Xn(λv(π)).

It remains to show that all the coefficients of Xn(λv(π)) are 1. If π ∈ Πk(N
′),

c(π)|N′. We have

d(Ps/c(π))−d(Ps−1/c(π)) = (ordP(Ps/c(π))+1)−(ordP(Ps−1/c(π))+1) = 1.

If π ∈ Πk(N)−Πk(N
′), then c(π)|N but - N′. This implies c(π) = N. Therefore,

d(N/c(π)) = 1, and the proposition follows.

3.3. The Truncated Kernels. Let τ be the characteristic function of [0,∞).

Let T > 0 be a sufficiently large real number. We now define Arthur’s truncated

kernel as found in [Ge, Lecture II Section 3]:

kT (g, f) = K(g, g)−
∑

δ∈B(F )\G(F )

∫

N(A)

∑

µ∈M(F )

f(g−1δ−1µnδg)dn τ(H(δg)−T ).

By [GJ, Lemma 5.6],
∑

δ is a finite sum for fixed g.

For f = fkf
n, by Proposition 3.2 and the fact that N(F )\N(A) is compact,

we easily see that the integrals
∫

N(F )\N(A)

∑

η∈N(F )

∑

µ∈M(F )

f(g−1δ−1µηnδg)dn

=

∫

N(A)

∑

µ∈M(F )

f(g−1δ−1µnδg)dn

are absolutely convergent. Thus kT (g, f) is well-defined.

By Lemma 2.1, when f = fkf
n,

∫

N(A)

∑

µ∈M(F )

f(g−1δ−1µnδg)dn =
∑

µ∈M(F )

∫

N(A)

f(g−1δ−1µnδg)dn = 0.

Therefore,

K(g, g) = kT (g, f)

and hence by (21)

(24) trR(f) =

∫

G(F )\G(A)

kT (g, f)dx.
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We partition G(F ) into an equivalence relation weaker than ordinary conju-

gacy classes. Two elements are equivalent if their semi-simple components are

conjugate in the usual sense (see [Ge, Lecture II] or [Ar1, p. 920]). We still call

an equivalence class under this relation a conjugacy class.

Let o be a conjugacy class in G(F ). Define

kTo (g, f)

=
∑

γ∈o

f(g−1γg)−
∑

δ∈B(F )\G(F )

∫

N(A)

∑

µ∈M(F )∩o

f(g−1δ−1µnδg)dn τ(H(δg)−T ).

We have

(25) K(g, g) = kT (g, f) =
∑

o

kTo (g, f)

and we are going to show that each of these terms is absolutely integrable over

G(F )\G(A). Denote

JTo (f) =

∫

G(F )\G(A)

kTo (g, f)dg.

We say that γ ∈ G(F ) is elliptic when it is not conjugate to an upper trian-

gular matrix (over F ), or equivalently, when the eigenvalues of γ lie outside F .

An element of G(F ) is hyperbolic if it has distinct F -rational eigenvalues. Such

a matrix is conjugate to a diagonal matrix in G(F ). We say that γ is unipo-

tent if it has a single eigenvalue, occurring as a double root of its characteristic

polynomial.

The characterization of γ as elliptic, hyperbolic, or unipotent clearly depends

only on the conjugacy class to which γ belongs, and is well-defined in G(F ).

We say o is elliptic (hyperbolic or unipotent) if γ ∈ o is elliptic (hyperbolic

or unipotent). There is only one unipotent conjugacy class.

Proposition 3.7: Let n ∈ O − {0}. Let Q be a positive integer. Then
∫

S′
∞

∑

γ /∈B(F ),
γ∈D(n,Q)

|fk(g−1γg)|dg

is finite.

Proof. Denote by F a fundamental domain of Rr/σ(O). We can assume that

its closure is a parallelepiped with the origin as one of the vertices. We can
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further assume F ⊂ [−M,M ]r for some positive number M . In what follows

the constants in � depend only on the field F , S′
∞, n, k, Q and M .

If σi(n) < 0 for some i, fki(g
−1
∞i
σi(γ)g∞i) = 0 for γ ∈ D(n, Q). The proposi-

tion is trivial. Therefore we assume σi(n) > 0 for all i.

We follow the proof of [KL, Lemma 18.3]. Let γ = ( a/Q b/Q
c/Q d/Q ) with a, b, c, d ∈

O. Let n′ = nQ2. We have ad− bc = n
′. Because γ is elliptic, c 6= 0. Obviously

b is uniquely determined by a, c and d.

Below we use ασi to represent σi(α) when α ∈ F or G(F ). By (17), g∞i =

( 1 xi
1 )(

y
1/2
i

y
−1/2
i

)kθi ∈ D×K∞i. It is easy to show that |fk(kθ1xkθ2)| = |f∞(x)|.
By (8),

fki(g
−1
∞i
γσig∞i) �

1

((aσi − cσixi)2 + (dσi + cσixi)2 + (Y ′cσi)2 + 2n′σi)ki/2
.

Let ε` = (ε`1, . . . , ε`r) ∈ F for ` = 1, 2, 3. By the elementary inequality 1
x2+∆2 ≤

(
1 +

∣∣ ε
∆

∣∣)2 1
(x+ε)2+∆2 [KL, Lemma 18.1],

|fki(g
−1
∞i
γσig∞i)| ≤ CiEi,

where

Ei =
1

((aσi − cσixi + ε1i)2 + (dσi + cσixi + ε2i)2 + (Y ′(cσi + ε3i))2 + 2n′σi)ki/2
.

and

Ci =

(
1 +

M√
2n′σi

)ki
(

1 +
M√
2n′σi

)ki
(

1 +
Y ′M√
2n′σi

)ki

� 1.

Let mF = meas(F) and dε` = dε`1 · · ·dε`r. Then

∑

γ

f(g−1γg)

�
∑

c∈O

∑

d∈O

∑

a∈O

1

m3
F

∫∫∫

F3

( r∏

i=1

Ei

)
dε1dε2dε3

=
1

m3
F

∑

c∈O

∫

ε3∈F

∫

Rr

∫

Rr

du1 · · ·dur dv1 · · · dvr dε31 · · · dε3r∏r
i=1(u

2
i + v2

i + (Y ′(cσi + ε3i))2 + 2n′σi)ki/2

=
1

m3
F

r∏

i=1

∫

R

∫

R

∫

R

dui dvi dwi
(u2
i + v2

i + (Y ′wi)2 + 2n′σi)ki/2



360 CHARLES LI Isr. J. Math.

The last line follows by using spherical coordinates and the fact that ki ≥ 4.

Therefore,

∫

S′
∞

∑

γ /∈B(F ),
γ∈D(n,Q)

fk(g
−1γg)dg �

r∏

i=1

∫ ∞

Y ′

∫

C′

dxidyi
y2
i

<∞.

Remark: Since the central character is trivial, ki is an even number strictly

greater than 2, i.e., ki ≥ 4. The above proof is only valid for this case. For

the case of non-trivial central characters, we have to prove the proposition for

ki ≥ 3. The technique used in the proof of [KL, Lemma 18.3] still works but a

complete proof is more complicated.

Corollary 3.8: Let f = fkf
n. Then

∫

S′

∑

γ /∈B(F )

ψ(N)−1|f |(g−1γg)dg

is bounded by a constant independent of N.

Proof. When g ∈ S′, gfin ∈ K ′
fin. Let Q be the integer defined in Corollary 2.6.

By Corollary 2.6, we can replace
∑

γ /∈B(F ) by
∑
i,j

∑
γ/∈B(F ), γ∈D(niuj ,Q). Let χ

be the characteristic function of M(n,N).
∫

S′

∑

γ /∈B(F )

ψ(N)−1|f |(g−1γg)dg

=
∑

i,j

∫

S′

∑

γ /∈B(F ),
γ∈D(niuj ,Q)

|(fk × χ)(g−1γg)|dg

≤ meas(K ′
fin)

∑

i,j

∫

S′
∞

∑

γ /∈B(F ),
γ∈D(niuj ,Q)

|fk|(g−1γg)dg.

Then the result follows from the previous proposition.

Corollary 3.9: Let f = fkf
n. Then

∫

G(F )\G(A)

∑

γ elliptic

|f |(g−1γg)dg <∞.

Proof. When γ is elliptic, γ /∈ B(F ). Because G(A) = G(F )S′, the corollary

follows easily by the previous proposition.
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Proposition 3.10: Let f = fkf
n. Let o be hyperbolic or unipotent. If

JTo (f) 6= 0, then there exists a diagonal matrix µ = ( a b ) ∈ M2(O) such that

µ ∈ o, detµ = niuj for some i, j and σ`(detµ) = σ`(niuj) > 0 for ` = 1, . . . , r.

Proof. If JTo (f) 6= 0, then either there exist µ ∈ M(F ), γ ∈ G(F ), η ∈ N(F )

and g ∈ G(A) such that µ ∈ o and

f(g−1γ−1µηγg) 6= 0,

or there exist µ as above, δ ∈ B(F )\G(F ), n ∈ N(A) and g ∈ G(A) such that

f(g−1δ−1µnδg) 6= 0.

By the definition of fk, either det(g−1
∞`
σ`(γ)

−1σ`(µη)σ`(γ)g∞`
) = σ`(detµ) > 0

for all ` or det(g−1
∞`
σ`(δ)

−1σ`(µ)n∞`
σ`(δ)g∞`

) = σ`(detµ) > 0 for all `. By

Corollary 2.5, we can assume µ = ( a b ) satisfying ab = niuj for some i, j and

either

g−1
fin γ

−1µηγgfin ∈
∏

v<∞

M2(Ov) or g−1
fin δ

−1µnfinδgfin ∈
∏

v<∞

M2(Ov).

Therefore, µη (or µnfin) is conjugate to an element in
∏
v<∞M2(Ov). As a

result, the characteristic polynomial (x − a)(x − b) is a monic polynomial over⋂
v<∞ Ov = O. This implies that a, b are in O.

Unlike the case F = Q (cf. [KL, Section 19]), the number of factorizations of

niuj into ab (a, b ∈ O) is not finite. In fact, ab = (au)(bu−1) for any u ∈ O∗. In

order to prove the absolute convergence of the hyperbolic terms, we need the

following proposition.

Proposition 3.11: Let µ = ( a b ) ∈ G(F ) such that σi(detµ) = σi(ab) > 0 for

i = 1, . . . , r. Let u ∈ O∗ and µu = ( au bu−1 ). Let ou be the conjugacy class

containing µu. Let f = fkf
n. Then

∑

u∈O∗/±1

∫

G(F )\G(A)

|kTou
(g, f)|dg <∞.

Remark: The conjugacy classes ou with u ∈ O∗/±1 may not be distinct. In

fact, if u = b/a is a unit, then ou1 = ou2 if and only if u1 = ±u2 or u1u2 = ±b/a.

Proof. We follow the arguments given in [KL, Theorem 19.5]. We break ou into

two parts:

o′u = ou ∩B(F ) and o′′u = ou − o′u.
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We break kTou
(g, f) into two parts corresponding to this partition of ou:

kTou
(g, f) = kTo′

u
(g, f) +Ko′′

u
(g, g),

where

kTo′
u
(g, f) =

∑

γ∈o′
u

f(g−1γg)

−
∑

δ∈B(F )\G(F )

∑

ν∈M(F )∩ou

∫

N(A)

f(g−1δ−1νnδg)dn τ(H(δg) − T )

and

Ko′′
u
(g, g) =

∑

γ∈o′′
u

f(g−1γg).

Let B ⊂ S be a fundamental domain of G(F )\G(A). By Corollary 3.8,

∑

u∈O∗/±1

∫

B

|Ko′′
u
(g, g)|dg ≤ 2

∫

S′

∑

γ /∈B(F )

|f(g−1γg)|dg <∞.

It remains to show that
∑

u∈O∗/±1

∫
B
|kTo′

u
(g, f)|dg <∞. For ξ ∈ A, ν ∈M(F ),

define

Φg,ν(ξ) = f

(
g−1ν

(
1 ξ

1

)
g

)
.

For t ∈ A, the Fourier transform of Φg,ν is

Φ̂g,ν(t) =

∫

A

f

(
g−1ν

(
1 ξ

1

)
g

)
θ(ξt)dξ,

where θ is a fixed non-trivial character on F\A. We follow the arguments given

in [Ge, Lecture II.4] and [KL, Theorem 19.5]. Let g ∈ S0 with H(g) ≥ T . Use

the notations in (16),

g =

(
1 x

1

)(
y1/2

y−1/2

)(
m

1

)
k, H(g) = log |y| ≥ T.

Let ` be an integer ≥ 2. The proposition follows if we can show that
∑

u∈O∗/±1

∑

β∈F∗

Φ̂g, µu(β) ≤ Ay−`,

where A is a constant that does not depend on g (see [KL, (19.4)]).
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Let `1, . . . , `r be integers ≥ 2. Let t ∈ A∗
∞. Below all the constants in � do

not depend on g, t or u. By [KL, Lemma 19.11],

Φ̂g, µu,∞i(t∞i) �
1

|t∞i |`i
∫

R

|Φ(`i)
g, µu,∞i

(s)|ds.

Simple calculation shows that (see [KL] proof of Proposition 19.12)

Φ̂g, µu,∞i(t∞i)

� 1

|t∞i |`i
∫

R

|y−1m−1
∞i
σi(au)|`ids

((|σi(au)| + |σi(bu−1)|)2 + |y−1m−1
∞iσi(au)|2s2)(ki+`i)/2

� |y−1m−1
∞i
σi(au)|`i−1

(|σi(au)| + |σi(bu−1)|)ki+`i−1

1

|t∞i |`i
∫

R

ds

(1 + s2)(ki+`i)/2

� 1

(|σi(au)| + |σi(bu−1)|)ki

1

|t∞i |`i
1

y`i−1

∫

R

ds

1 + s2

� 1

(|σi(u)| + |σi(u)−1|)2
1

|t∞i |`i
1

y`i−1
.

Since S0,fin is a compact set, it can be covered by finite cosets in the form

of xK0(N), x ∈ G(A)fin. We can show that Supp Φ̂g, µu,fin is a compact set

independent of g and u by following the argument of the proof of Proposition

19.12 on p. 258 in [KL]. Suppose the support ⊂ 1
M Ô for some positive integer

M . For every α ∈ O, we construct an r-tuple of positive integers (`α1, . . . , `αr)

as follows

`αi =





` if σi(α) ≤ 1

`+ 1 otherwise.

In other words, |σi(α)|`αi = |σi(α)|` max(1, |σi(α)|). For β = α
M ∈ 1

MO − {0},

|Φ̂g,µu(β)|

� 1∏r
i=1(|σi(u)| + |σi(u)−1|)2

r∏

i=1

M `αi

y`αi−1|σi(α)|`αi

≤ 1∏r
i=1(|σi(u)| + |σi(u)−1|)2

(
1

|NF/Q(α)|`
1∏r

i=1 max(1, |σi(α)|)

)
M r(`+1)

y(`−1)r

≤ 1∏r
i=1(|σi(u)| + |σi(u)−1|)2

(
1

|NF/Q(α)|`
1∏r

i=1(1 + |σi(α)|)/2

)
M r(`+1)

y(`−1)r
.
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Therefore,

∑

u∈O∗/±1

∑

β∈F∗

|Φ̂g ,µu(β)|

�
( ∑

u∈O∗/±1

1∏r
i=1(|σi(u)| + |σi(u)−1|)2

)

×
( ∑

α∈O−{0}

1

|NF/Q(α)|`
1∏r

i=1(1 + |σi(α)|)

)
1

y(`−1)r
.

The convergences of the summations over u and α are proved in the next two

lemmas. Therefore

∑

u∈O∗/±1

∑

β∈F∗

|Φ̂g ,µu(β)| � 1

y(`−1)r
≤ 1

y`
.

This completes the proof.

Let Λ = {(log |σ1(u)|, . . . , log |σr(u)|) : u ∈ O∗} be a sublattice of L0 =

{(x1, . . . , xr) ∈ Rr : x1 + · · · + xr = 0}.

Lemma 3.12:

∑

u∈O∗/±1

1∏r
i=1(|σi(u)| + |σi(u)−1|)2 <∞.

Proof.

∑

u∈O∗/±1

1∏r
i=1(|σi(u)| + |σi(u)−1|)2 =

∑

λ∈Λ

1∏r
i=1(e

λi + e−λi)2

�
∫

x1+···+xr=0

dx1 · · · dxr−1∏r
i=1(e

xi + e−xi)2

≤
∫

Rr−1

dx1 · · ·dxr−1∏r−1
i=1 (exi + e−xi)2

<∞.

Lemma 3.13: Let ` ≥ 2 be an integer. Then

∑

α∈O−{0}

1

|NF/Q(α)|`
1∏r

i=1(1 + |σi(α)|) <∞
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Proof. The summation is equal to

∑

α∈O−{0}

1

|NF/Q(α)|`
1∏r

i=1 |σi(α)|1/2 ∏r
i=1(|σi(α)|1/2 + |σi(α)|−1/2)

=2
∑

α∈O∗\O−{0}

1

|NF/Q(α)|`+1/2

∑

λ∈Λ

1∏r
i=1(e

(λi+log |σi(α)|)/2 + e−(λi+log |σi(α)|)/2)

�
∑

α∈O∗\O−{0}

1

|NF/Q(α)|`+1/2

∫

L0

dx1 · · ·dxr−1∏r
i=1(e

(log |σi(α)|+xi)/2 + e−(log |σi(α)|+xi)/2)

�
∑

principal ideals (α)

1

|N((α))|`+1/2

∫

Rr−1

dx1 · · · dxr−1∏r−1
i=1 (exi/2 + e−xi/2)

�
∑

a all integral ideals

1

|N(a)|`+1/2
<∞.

Proposition 3.14: Let γ0 = ( a b ) be a hyperbolic element such that σi(ab) > 0

for i = 1, . . . , r. Let o be its conjugacy class. Let f = fkf
n. Then kTo (g, f) is

absolutely integrable over G(F )\G(A) and

(26) JTo (f) = meas(F ∗\A1)

∫

M(A)\G(A)

f(g−1γ0g)
(
T − 1

2
v(g)

)
dg,

where v(g) = H(g) +H(wg). The height function H is defined few lines before

Section 2.1.

Proof. The proof is divided into two steps:

Step 1: Arthur’s modified truncated kernel function

k̃To (g, f) = K(g, g)−
∑

δ∈B(F )\G(F )

∑

ν∈N(F )

∑

µ∈o∩M(F )

f(g−1δ−1µνδg) τ(H(δg)−T )

is absolutely integrable over G(F )\G(A) and
∫

G(F )\G(A)

kTo (g, f)dg =

∫

G(F )\G(A)

k̃To (g, f)dg.

Step 2:
∫
G(F )\G(A)

k̃To (g, f)dg is equal to the right hand side of (26). The

proof for compactly supported f and F = Q can be found in [Ar1, Section 8]

or [Ar2, Section 11]. The reader is referred to [KL, Section 20] for a proof for

f = fkf
n and F = Q. With some obvious modifications, the proof in [KL] can

be generalized to other F .
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Corollary 3.15: Let γ0 = ( a b ) be a hyperbolic element such that σi(ab) > 0

for i = 1, . . . , r. Let o be its conjugacy class. When f = fkf
n, the constant

term of JTo (f) is 0.

Proof. By [KL, Proposition 20.6], the integrals of the constant term and the

coefficient of T in (26) are absolutely convergent. By (26), the constant term

of JTo (f) is given by

(27) −meas(F ∗\A1)

2

∫

M(A)\G(A)

f(x−1γ0x)v(x)dx.

The above integral is called a weighted orbital integral. The orbital integral

∫

M(R)\G(R)

fki(g
−1σi(γ0)g)dg =

∫

R

fki

((
1 −t

1

)(
σi(a)

σi(b)

)(
1 t

1

))
dt

=

∫

R

fki

((
σi(a)

σi(b)

)(
1 (1 − σi(b)

σi(a)
)t

1

))
dt

= 0.

The last step is from Lemma 2.1. The discussion in [Ge, Lecture V] (especially

Proposition 1.1) shows that if the local orbital integrals vanish at 2 distinct

places v1 and v2, then the the weighted orbital integral (27) vanishes. Taking

v1 = ∞1, v2 = ∞2, we can show that the weighted orbital integral is 0.

Lemma 3.16: Let f = fkf
n.

(28)
∑

t∈F∗

f

(
g−1

(
1 t

1

)
g

)
−

∫

N(A)

f(g−1ng)τ(H(g) − T )

is absolutely integrable over B(F )\G(A).

Proof. It suffices to show that (28) is absolutely integrable over S0. We follow

the proof of [KL, Lemma 21.3]. It remains to show that

(29)
∑

t∈F∗

∣∣∣∣∣f
(
g−1

(
1 t

1

)
g

)∣∣∣∣∣

is absolutely integrable over S̃T
0 = {g ∈ S0 : H(g) ≤ T }. Because S0,fin is

a compact set, it is easy to see that the support of t 7→ ffin(g
−1
fin ( 1 t

1 )gfin) is

compact, and hence is contained in 1
M Ô for some positive integer M . Using the
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notation in (16), by (8) we have

(29) �
∑

t∈O−{0}

1∏r
i=1(4 + y−2m−2

∞iM
−2σi(t)2)ki/2

We have the following inequalities

1

4 + y−2m−2
∞iM

−2σi(t)2
≤ M2m2

∞i
y2

σi(t)2
,

1

4 + y−2m−2
∞iM

−2σi(t)2
≤ 1

4
.

For t ∈ O − {0}, there exists two different indexes i, j (depending on t) such

that |σi(t)σj(t)| ≥ 1. Otherwise 1 >
∏
i6=j |σi(t)σj(t)| = |NF/Q(t)|r−1 ≥ 1.

This is absurd. We apply the first inequality to i and j. We apply the second

inequality to other indexes.

(29) �
∑

t∈O−{0}

y2

2r−2

1∏r
i=1(4 + y−2m−2

∞iM
−2σi(t)2)(ki−1)/2

� y2
∑

t∈O−{0}

1∏r
i=1(4 + e−2Tm−2

∞iM
−2σi(t)2)(ki−1)/2

� y2

∫

Rr

dx1 · · ·dxr
∏r
i=1 (1 + x2

i )
(ki−1)/2

� y2.

Therefore,
∫

S̃T
0

(29)dg �
∫

C01

∫

C02

∫ eT

0

y2 dy

y2
dmdx <∞.

Proposition 3.17: Let f = fkf
n. When o is unipotent,

(30)

JTo (f) = meas(G(F )\G(A))f(e) + f. p.s=1 ζ(Ψ, s) + T meas(F ∗\A1)

∫

A

Ψ(t)dt,

where e is the identity matrix,

Ψ(t) =

∫

K

f

(
k−1

(
1 t

1

)
k

)
dk,

and f.p.s=1ζ(Ψ, s) is the finite part at s = 1, i.e., the constant term of the

Laurent expansion about s = 1 of the Tate integral

ζ(Ψ, s) =

∫

A∗

Ψ(a)|a|sd∗a.



368 CHARLES LI Isr. J. Math.

Proof. When f is a compactly supported function, see [Ge, Lecture IV Propo-

sition 1.2] or [GJ, p. 235–238] for the proof. The proof can be generalized to

f = fkf
n (see [KL, Chapter 21] for the case of F = Q). By replacing [KL,

Lemma 21.3] by Lemma 3.16, the proof in [KL] can be generalized to other F

with some obvious modifications.

Proposition 3.18:

ζ(Ψ∞i , s) =

∫

R∗

∫

K∞i

fki(k
−1( 1 a

0 1 )k)|a|sdk d∗a

is absolutely convergent when 0 < Re s < ki and hence defines an analytic

function for 0 < Re s < ki. It has a zero at s = 1.

Proof. The absolute convergence follows from the bound (8), see [KL, Section

25.1]. The proposition follows easily from Lemma 2.1 by switching the order of

the integrals and taking s = 1.

Proposition 3.19: ζ(Ψ, s) has a zero at s = 1. i.e.

f.p.s=1ζ(Ψ, s) = 0.

Proof. Let Ψv(t) =
∫
Kv

fv(k
−1( 1 t

1 )k)dk. Let Ψfin =
∏
v<∞ Ψv. When v - n, Ψv

is the characteristic function of Ov. By Tate’s theory, ζ(Ψfin, s) is a meromorphic

function with the only possible simple pole s = 1 in Re s > 0. By the previous

proposition, the order of ζ(Ψ, s) at s = 1 is r − 1 ≥ 1.

Corollary 3.20: Let f = fkf
n. When o is unipotent, the constant term of

JTo (x, f) is meas(G(F )\G(A))f(e).

Proof. This follows easily from the previous proposition and Proposition 3.17.

Theorem 3.21: Let f = fkf
n, then

trR(f) = meas(G(F )\G(A))f(e) +

∫

G(F )\G(A)

∑

γelliptic

f(g−1γg)dg,

where e is the identity matrix.

Proof. When o is elliptic, kTo (g, f) =
∑

γ∈o
f(g−1γg). Thus

∑
o elliptic

kTo (g, f) =∑
γ elliptic

f(g−1γg). By Corollary 3.9, the sum is absolutely integrable over

G(F )\G(A).
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The number of a ∈ O/O∗ such that a|niuj is finite. Therefore, by Proposi-

tions 3.10 and 3.11,
∫
G(F )\G(A)

∑
o |kTo (g, f)|dg <∞. By (24) and (25),

trR(f) =

∫

G(F )\G(A)

∑

o

kTo (g, f)dg

=

∫

G(F )\G(A)

∑

γ elliptic

f(g−1γg)dg +
∑

o hyperbolic or unipotent

JTo (f).

The right hand side is a linear function of T but the left hand is independent

of T . Thus the coefficient of T is zero. The result now follows easily from

Corollaries 3.15 and 3.20.

4. The Distribution of Hecke Eigenvalues

Lemma 4.1: Let N be a prime ideal of O. Let w be the corresponding valuation.

Suppose γ ∈ GL2(Ow) with (det γ) = nw. Let χw be the characteristic function

of M(nw,Nw).

If γ is not conjugate to ( a ∗
a ) in M2(Ow/Nw) (when N - 2, this is equivalent

to (tr γ)2 − 4 det γ /∈ Nw), then
∫

Kw

χw(k−1γk)dk ≤ 2ψ(Nw)−1.

Proof. The inequality is trivial if the integral is zero. By Lemma 2.3, χw(k−1γk)

is nonzero if and only if k−1γk ∈ M(nw,Nw), equivalently k−1γk ≡ ( ∗ ∗
∗ )

(mod Nw). If the above integral is nonzero, then there exists k0 ∈ Kw such

that k−1
0 γk0 ≡ ( a b0 d ) (mod Nw). Notice that Ow/Nw is a finite field. If a 6= d

in Ow/Nw, we can find t ∈ Ow such that ( 1 t
1 )−1( a b0 d )( 1 t

1 ) ≡ ( a d ) (mod Nw).

Therefore, without loss of generality we can assume b = 0. A simple calculation

shows that k−1( a 0
0 d )k ≡ ( ∗ ∗

∗ ) (mod Nw) if and only if k ∈ K0(Nw) or k ∈
( 0 1

1 0 )K0(Nw). Thus in this case

∫

Kw

χw(k−1γk)dk = meas(k0K0(Nw)) + meas

(
k0

(
0 1

1 0

)
K0(Nw)

)

= 2ψ(Nw)−1.

This proves the lemma.

Proposition 4.2: Let Ni be a sequence of prime ideals as described in Theo-

rem 1.1. Recall that fn
Ni

is the finite part of the test function corresponding to
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N = Ni. Then

lim
i→∞

∑

γ elliptic

∫

G(F )\G(A)

ψ(Ni)
−1(fk × fn

Ni
)(g−1γg)dg = 0.

Proof. When g ∈ S′, by Corollary 2.6 we can replace
∑
γ elliptic by

∑

`,j

∑

γ elliptic,
γ∈D(n`uj ,Q)

.

Now
∫

G(F )\G(A)

∑

γ elliptic

|f(g−1γg)|dg ≤
∫

S′

∑

γ elliptic

|f(g−1γg)|dg

=
∑

`,j

∑

γ elliptic,
γ∈D(u`nj ,Q)

∫

S′

|f(g−1γg)|dg.

Let χiv be the characteristic function of M(nv,Niv). Let χi be
∏
v<∞ χiv.

The proposition follows if we can prove that

lim
i→∞

∑

γ elliptic,
γ∈D(n`uj,Q)

∫

S′

|(fk × χi)(g
−1γg)|dg = 0.

Since N(Ni) → ∞, we can assume Ni - 2Qb1 · · · bt. Let wi be the valuation

corresponding to Ni. When Ni is sufficiently large, K ′
wi

= Kwi . For fixed

n`, uj, partition the elliptic elements γ ∈ D(n`uj, Q) into two sets: S1 =

{γ : (trQγ)2 − 4 detQγ /∈ Ni} and S2 = {γ : (trQγ)2 − 4 detQγ ∈ Ni}.
Since Ni - Q, γ ∈ M2(Owi). Since Ni - b`, n`Owi = nwi by (11). Apply the

previous lemma and Proposition 3.7 for the first set S1,

∑

γ∈S1

∫

S′

|(fk × χi)(g
−1γg)|dg

=
∑

γ∈S1

∫

S′
∞

|fk|(g−1
∞ γg∞)dg∞

∫

Kwi

χiwi(g
−1
wi
γgwi)dgwi

∏

v 6=wi

∫

K′
v

χiv(g
−1
v γgv)dgv

≤ 2ψ(Ni)
−1

∏

v 6=wi

meas(K ′
v)

∫

S′
∞

∑

γ elliptic,
γ∈D(n`uj,Q)

|fk|(g−1
∞ γg∞)dg∞ � ψ(Ni)

−1.

Notice that ψ(Ni)
−1 → 0 when i→ ∞.

For the second set S2, let a be an integer ≥ 1. When γ is elliptic,

(trQγ)2 − 4 detQγ 6= 0. Therefore, |NF/Q((trQγ)2 − 4 detQγ)| is a positive
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integer. Consider the following summation

Ba =
∑

γ elliptic, γ∈D(n`uj ,Q),

|NF/Q((trQγ)2−4 detQγ)|=a

∫

S′
∞

|fk|(g−1γg)dg.

From Proposition 3.7,
∑
a≥1Ba is convergent. Therefore,

∑
a≥ABa → 0, when

A→ ∞.

When γ ∈ S2, N(Ni)|NF/Q((trQγ)2 − 4 detQγ). Thus

|NF/Q((trQγ)2 − 4 detQγ)| ≥ N(Ni).

We have∣∣∣∣
∑

γ∈S2

∫

S′

(fk × χi)(g
−1γg)dg

∣∣∣∣ ≤ meas(K ′
fin)

∑

a≥N(Ni)

Ba → 0 when i→ ∞.

This completes the proof.

Proposition 4.3: Let n = pn, then

lim
i→∞

∑
π∈Πk(Ni)

Xn(λv(π))

|Πk(Ni)|
=




q
−n/2
v if 2|n,

0 otherwise.

Proof. Let N = Ni. Let χn
N be the characteristic function of

∏
v<∞M(nv,Nv).

Using the trace formula in Theorem 3.21 and the previous proposition, we have

(31) trR(fkf
n
N) = meas(G(F )\G(A))ψ(N)fk(e)χ

n
N(e) + o(ψ(N)).

Obviously, trR(fkf
n
O) = O(1) = o(ψ(N)). Therefore, by Proposition 3.6, we

have

(32) qn/2v

∑

π∈Πk(N)

Xn(λv(π)) = meas(G(F )\G(A))ψ(N)fk(e)χ
n
N(e) + o(ψ(N))

Following the argument in Proposition 2.4, we can show that χn
N(e) = 1 only if

there exists an ideal b such that b2n = (1), i.e., n is even. Under this assumption,

b = p−n/2 and χn
N(e) = 1 if and only if b−1

w e = p
n/2
w e ⊂M(nw,Nw) for all finite

places w, which is automatically true. Therefore,

χn
N(e) =





1 if 2|n,

0 otherwise.

Taking n = 0 in (32), we have

(33) |Πk(N)| = meas(G(F )\G(A))ψ(N)fk(e) + o(ψ(N)).
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The proposition follows easily by taking the quotient of (32) and (33).

Proof of theorem 1.1: From [Se1, (17)],

qv + 1

(q
1/2
v + q

−1/2
v )2 − x2

=

∞∑

m=0

q−mv X2m(x).

By the orthonormality of {Xm} relative to dµ∞ [Se1, (16)] and the previous

proposition, we have

(34) lim
i→∞

∑
π∈Πk(Ni)

Xn(λv(π))

|Πk(Ni)|
=

∫

R

Xn(x)dµv(x).

The values λv(π) are contained in a finite interval Iv [Ro, Proposition 2.9]. We

can take Iv = [−2, 2] if we assume the validity of the Ramanujan conjecture but

we do not need this strong result. Because polynomials are dense in L∞(Iv),

(34) remains true if we replace Xn by an arbitrary continuous function. This

proves the main theorem.
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